服务热线18562255186

磁阻传感器与磁场测量

时间:2024-04-16 05:25:50 作者: 极速nba直播吧免费直播NBA夏季联赛

  数据处理要求:以磁感应强度为横轴,输出电压为纵轴,将上表数据作图,并确定所用传感器的线性工作范围及灵敏度。

  复位(R/S)按钮每按下一次,向复位端输入一次复位脉冲电流,仅在需要时使用。

  将磁阻传感器位置调节至赫姆霍兹线圈中心,传感器磁敏感方向与线圈轴线一致。

  调节赫姆霍兹线圈电流为零,按复位键恢复传感器特性,调节补偿电流以补偿地磁场等因素产生的偏离,使传感器输出为零。调节赫姆霍兹线mA(线高斯),调节放大器校准旋钮,使输出电压为1 .500伏。

  由毕奥-萨伐尔定律,一样能计算赫姆霍兹线圈空间任意一点的磁场分布,由于赫姆霍兹线圈的轴对称性,只要计算(或测量)过轴线的平面上两维磁场分布,就可得到空间任意一点的磁场分布。

  在实验室内测量地磁场时,建筑物的钢筋分布,同学携带的铁磁物质,都可能会影响测量结果,因此,此实验重在掌握测量方法。

  在磁阻传感器中,为了消除温度等外因对输出的影响,由4个相同的磁阻元件构成惠斯通电桥,结构如图1所示。图1中,易磁化轴方向与电流方向的夹角为45度。理论分析与实验表明,采用45度偏置磁场,当沿与易磁化轴垂直的方向施加外磁场,且外磁场强度不太大时,电桥输出与外加磁场强度成线

  调节传感器磁敏感方向与赫姆霍兹线圈轴线一致,位置调节至赫姆霍兹线),测量输出电压值。

  磁电转换特性是磁阻传感器最基本的特性。磁电转换特性曲线的直线部分对应的磁感应强度,即磁阻传感器的工作范围,直线部分的斜率除以电桥电压与放大器放大倍数的乘积,即为磁阻传感器的灵敏度。

  按表1数据从300mA逐步调小赫姆霍兹线圈电流,记录相应的输出电压值。切换电流换向开关(赫姆霍兹线圈电流反向,磁场及输出电压也将反向),逐步调大反向电流,记录反向输出电压值。注意:电流换向后,必须按复位按键消磁。

  磁阻元件的发展经历了半导体磁阻(MR),各向异性磁阻(AMR),巨磁阻(GMR),庞磁阻(CMR)等阶段。本实验研究AMR的特性并利用它对磁场进行测量。

  物质在磁场中电阻率发生明显的变化的现象称为磁阻效应,磁阻传感器利用磁阻效应制成。

  磁场的测量可利用电磁感应,霍耳效应,磁阻效应等各种效应。其中磁阻效应法发展最快,测量灵敏度最高。磁阻传感器可用于直接测量磁场或磁场变化,如弱磁场测量,地磁场测量,各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机等等。也可通过磁场变化测量其它物理量,如利用磁阻效应已制作成各种位移、角度、转速传感器,各种接近开关,隔离开关,大范围的使用在汽车,家电及各类需要自动检验测试与控制的领域。

  赫姆霍兹线圈是由一对彼此平行的共轴圆形线圈组成。两线圈内的电流方向一致,大小相同,线圈之间的距离d正好等于圆形线圈的半径R。这种线圈的特点是能在公共轴线中点附近产生较广泛的均匀磁场,根据毕奥-萨伐尔定律,可以计算出赫姆霍兹线圈公共轴线中点的磁感应强度为:

  式中N为线圈匝数,I为流经线圈的电流强度,R为赫姆霍兹线圈的平均半径, 为真空中的磁导率。采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000高斯)。本实验仪N=310,R=0.14m,线高斯。

  赫姆霍兹线圈是由一对彼此平行的共轴圆形线圈组成。两线圈内的电流方向一致,大小相同,线圈匝数为N,线圈之间的距离d正好等于圆形线圈的半径R,若以两线圈中点为坐标原点,则轴线上任意一点的磁感应强度是两线圈在该点产生的磁感应强度之和:

  式中B0是X=0时,即赫姆霍兹线圈公共轴线列出了X取不同值时B(X)/B0值的理论计算结果。

  AMR只对磁敏感方向上的磁场敏感,当所测磁场与磁敏感方向有一定夹角α时,AMR测量的是所测磁场在磁敏感方向的投影。由于补偿调节是在确定的磁敏感方向进行的,实验过程中应注意在改变所测磁场方向时,保持AMR方向不变。

  松开线圈水平旋转锁紧螺钉,每次将赫姆霍兹线度后锁紧,松开传感器水平旋转锁紧螺钉,将传感器盒向相反方向转动10度(保持AMR方向不变)后锁紧,记录输出电压数据于表2中。

  实验仪结构如图2所示,核心部分是磁阻传感器,辅以磁阻传感器的角度、位置调节及读数机构,赫姆霍兹线圈等组成。

  本仪器所用磁阻传感器的工作范围为±6高斯,灵敏度为1mV/V/Guass。当磁阻电桥的工作电压为1V,被测磁场磁感应强度为1高斯时,输出信号为1mV。

  磁阻传感器的输出信号通常须经放大电路放大后,再接显示电路,故由显示电压计算磁场强度时还需考虑放大器的放大倍数。本实验仪电桥工作电压5V,放大器放大倍数50,磁感应强度为1高斯时,对应的输出电压为0.25伏。

  式中Vb为电桥工作电压,R为桥臂电阻,ΔR/R为磁阻阻值的相对变化率,与外加磁场强度成正比,故AMR磁阻传感器输出电压与磁场强度成正比,可利用磁阻传感器测量磁场。

  商品磁阻传感器已制成集成电路,除图1所示的电源输入端和信号输出端外,还有复位/反向置位端、补偿端两个功能性输入端口,以确保磁阻传感器的正常工作。

  恒流源为赫姆霍兹线圈提供电流,电流的大小能够最终靠旋钮调节,电流值由电流表指示。电流换向按钮能改变电流的方向。

  补偿(OFFSET)电流调节旋钮调节补偿电流的方向和大小。电流切换按钮使电流表显示赫姆霍兹线圈电流或补偿电流。

  传感器采集到的信号经放大后,由电压表指示电压值。放大器校正旋钮在标准磁场中校准放大器放大倍数。

  在现代数字导航仪等系统中,通常用互相垂直的三维磁阻传感器测量地磁场在各个方向的分量,根据矢量合成原理,计算出地磁场的大小和方位。本实验学习用单个磁阻传感器测量地磁场的方法。

  将赫姆霍兹线圈电流调节至零,将补偿电流调节至零,传感器的磁敏感方向调节至与赫姆霍兹线圈轴线垂直(以便在垂直面内调节磁敏感方向)。

  调节传感器盒上平面与仪器底板平行,将水准气泡盒放置在传感器盒正中,调节仪器水平调节螺钉使水准气泡居中,使磁阻传感器水平。松开线圈水平旋转锁紧螺钉,在水平面内仔细调节传感器方位,使输出最大(若无法调到最大,则需要将磁阻传感器在水平方向转动180度后再调节)。此时,传感器磁敏感方向与地理南北方向的夹角就是磁偏角。

  复位/反向置位端的作用是:当AMR置于超过其线性工作范围的磁场中时,磁干扰可能会引起磁畴排列紊乱,改变传感器的输出特性。此时按下复位/反向置位端,通过内部电路沿易磁化轴方向产生强磁场,使磁畴重新沿易磁化轴方向整齐排列,恢复传感器的使用特性。

  补偿端的作用是:当4个桥臂电阻不严格相等,或是外界磁场干扰,使得被测磁场为零而输出电压不为零时,此时可调节补偿电流,通过内部电路在磁敏感方向产生磁场,用人为的磁场偏置补偿传感器的偏离。

  各向异性磁阻传感器AMR(Anisotropic Magneto-Resistive sensors)由沉积在硅片上的坡莫合金(Ni80Fe20)薄膜形成电阻。沉积时外加磁场,形成易磁化轴方向。铁磁材料的电阻与电流和磁化方向的夹角有关,电流与磁化方向平行时电阻Rmax最大,电流与磁化方向垂直时电阻Rmin最小,电流与磁化方向成θ角时,电阻可表示为:

  以夹角α为横轴,输出电压为纵轴,从图中能够准确的看出:该组数据近似的接近余弦规律,近似函数为U=1.025cosα,即输出电压与夹角的余弦成正比。

  松开传感器绕轴旋转锁紧螺钉,在垂直面内调节磁敏感方向,至输出最大时转过的角度就是磁倾角,记录此角度。

  记录输出最大时的输出电压值U1后,松开传感器水平旋转锁紧螺钉,将传感器转动180度,记录此时的输出电压U2,将U=(U1-U2)/2 作为地磁场磁感应强度的测量值(此法可消除电桥偏离对测量的影响)。

  根据毕奥-萨伐尔定律,可以计算出通电圆线圈在轴线上任意一点产生的磁感应强度矢量垂直于线圈平面,方向由右手螺旋定则确定,与线的点的磁感应强度为:

  理论分析表明,在X0.2R,Y0.2R的范围内,(BX-B0)/B0小于百分之一,BY/BX小于万分之二,故可认为在赫姆霍兹线圈中部较大的区域内,磁场方向沿轴线方向,磁场大小基本不变。

  按表4数据改变磁阻传感器的空间位置,记录X方向的磁场产生的电压VX,测量赫姆霍兹线赫姆霍兹线圈空间磁场分布测量 B0= 4高斯

  无外加磁场或外加磁场方向与易磁化轴方向平行时,磁化方向即易磁化轴方向,电桥的4个桥臂电阻阻值相同,输出为零。当在磁敏感方向施加如图1所示方向的磁场时,合成磁化方向将在易磁化方向的基础上逆时针旋转。结果使左上和右下桥臂电流与磁化方向的夹角增大,电阻减小ΔR;右上与左下桥臂电流与磁化方向的夹角减小,电阻增大ΔR。通过对电桥的分析可知,此时输出电压可表示为:

  地球本身就具有磁性,地表及近地空间存在的磁场叫地磁场。地磁的北极,南极分别在地理南极,北极附近,彼此并不重合,可用地磁场强度,磁倾角,磁偏角三个参量表示地磁场的大小和方向。磁倾角是地磁场强度矢量与水平面的夹角,磁偏角是地磁场强度矢量在水平面的投影与地球经线(地理南北方向)的夹角。



上一篇:物理实验之磁阻效应法测量磁场

下一篇:磁致伸缩动态扭矩传感器

极速nba直播吧免费直播NBA夏季联赛磁致伸缩位移传感器店铺二维码 极速nba直播吧免费直播NBA夏季联赛磁致伸缩液位传感器店铺二维码
极速nba直播吧免费直播NBA夏季联赛磁致伸缩位移传感器logo图片
Copyright © 2019 NADO | All right reserved. 鲁ICP备16037561号
网站地图